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Abstract. We investigate the statistics of the mean magnetization, of its large deviations
and persistent large deviationsin simple coarsening systems. In particular we consider more
specifically the case of the diffusion equation, of the Ising chain at zero temperature and of the
two-dimensional voter model. For the diffusion equation, at large times, the mean magnetization
has a limit law, which is studied analytically using the independent interval approximation. The
probability of persistent large deviations, defined as the probability that the mean magnetization
was, for all previous times, greater than some levelx, decays algebraically at large times, with
an exponentθ(x) continuously varying withx. When x = 1, θ(1) is the usual persistence
exponent. Similar behaviour is found for the Glauber–Ising chain at zero temperature. For the
two-dimensional voter model, large deviations of the mean magnetization are algebraic, while
the probability of persistent large deviations seem to behave as the usual persistence probability.

1. Introduction

To date most studies of persistence in simple nonequilibrium systems have focused on
the behaviour of the persistence probability at large times and on the computation of the
related persistence exponent [1–28]. The aim of this paper is to broaden the scope of these
former studies by investigating the statistics of more general persistent events. We shall see
that consideration of these events leads, in particular, to the introduction of new nontrivial
exponents.

A simple definition of persistence may be given as follows. Let a time-dependent
random variableσ(t) take only two values±1, with some dynamical rule. Think for
instance ofσ(t) as being the spin at a particular site in a dynamical Ising model. The
persistence of this random variable up to timet corresponds to the most extreme situation
where it never changed sign. In other terms the spin spent all of its time in only one of
the two possible phases. Note that, by its very definition, this event is nonlocal in time.
The probability of this event, or persistence probability, for most of the systems mentioned
above, decreases algebraically in time, with nontrivial exponents. The surprise of finding
new nontrivial exponents in the dynamics of nonequilibrium systems motivated, to a large
extent, the interest for the subject.

In this paper we investigate the statistics oflarge deviationsand of persistent large
deviationsfor simple coarsening systems. Both are natural generalizations of the concept
of persistence. We apply this study to the case of the diffusion equation, the one-dimensional
Glauber–Ising chain at zero temperature, and the two-dimensional voter model.

0305-4470/98/245413+17$19.50c© 1998 IOP Publishing Ltd 5413
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Let us define the mean ‘magnetization’ at timet of the random processσ(t), or ‘spin’
for short, as

M(t) = 1

t

∫ t

0
du σ(u) (1.1)

which is such that−16 M(t) 6 1. The quantities considered in this work are the following.
We first define the distribution of the mean magnetization by

P(t, x) = P(M(t) > x). (1.2)

For x > 0 this quantity measures the chance for the mean magnetization to deviate from
its average†. In the regime of large times, and forx much larger than the width of the
probability density function ofM, P(t, x) is referred to as the probability of large deviations.

We then define

R(t, x) = P(M(u) > x, ∀u 6 t). (1.3)

This quantity will be hereafter referred to as the probability ofpersistent large deviations.
Persistence, as defined above, corresponds to the largest deviation such thatM(t) = 1

(assuming for instance thatσ = 1 initially). The persistence probability therefore reads

R(t) = P(σ(u) = 1, ∀u 6 t) = P(t, 1) = R(t, 1) (1.4)

thus appearing as a limiting case of the two previous probabilities.
We find, for the models considered in this work, the following results in the long time

regime.
(i) For the diffusion equation,M(t) has a limit law, i.e.P(t, x) converges to a limit

distribution P∞(x) when t → ∞. Using the independent interval approximation, the
moments of this limit distribution are computed analytically. Their behaviour at high orders,
or the singular behaviour ofP∞(x) for x → 1, are related to the persistence exponentθ .

The probabilityR(t, x) is found numerically to behave ast−θ(x), with an exponentθ(x)
varying continuously from 0 forx = −1, to θ , the usual persistence exponent, forx = 1.
(See section 3.)

(ii) For the one-dimensional Ising model at zero temperature, similar behaviour is found,
namelyP(t, x)→ P∞(x) andR(t, x) ∼ t−θ(x). (See section 4.)

(iii) For the two-dimensional voter model, numerical simulations suggest that, in the
regime of large deviations,P(t, x) behaves ast−θ̃ (x), with an exponent continuously varying
with x (x > 0). They also seem to indicate thatR(t, x) behaves as exp[−J (x)(ln t)2]. (See
section 5.)

We devote the next section to further considerations on large deviations and persistent
large deviations. A general discussion and generalizations shall be given in section 6.

2. Large deviations and persistent large deviations

Let us comment on definitions (1.2) and (1.3).
First it is obvious that large deviations reflect a persistence property of the process.

Think for instance of an event such thatM(t) takes a value very close to 1, corresponding
to a very large deviation. This is even more true of apersistentlarge deviation which is a
more constrained event.

† Hereafter we shall only consider cases with zero average magnetization, i.e. such that the average〈σ(t)〉 of the
spin (and therefore ofM(t)) over histories is zero.
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Let us define theoccupation timeof the phases(+) or (−), i.e. the time spent in the
σ = ± phase, by

T± =
∫ t

0
du

1± σ(u)
2

= t
(

1±M(t)
2

)
. (2.1)

In other words, the mean magnetizationM(t) of a generic spin gives a measure of the
fraction of time that this spin spent in one of the two phases. Therefore, while a large
deviation only requires that a generic spin was, up to timet , most of the timein the same
phase, in such a way thatM(t) > x, a persistent large deviation constrains the spin to fulfil
this conditionat all previous times. Finally persistence corresponds for the spin to staying
always in the same phase, henceR(t) = P(T+ = t). (Assuming that initiallyσ = −1
would lead to the definitionR(t) = P(T− = t).)

Let us now illustrate the previous definitions on the very simple example of a symmetric
random walk on a one-dimensional lattice. We denote byσ(t) the step made by the walker
at the discrete timet , whereσ = ±1 with probability 1

2. Starting from the origin at time 0,
the position of the walker at timet is given by

∑t
1 σ(u). Its average position is equal to 0.

The quantityM(t) introduced above represents the mean speed of the walker.
The law of the position of the walker is well known. At large times it is normally

distributed around its mean, with a variance proportional tot . As a consequence, the
density ofM is peaked aroundx = 0, with a variance decreasing as 1/t . The probability
of a large deviation, giving a measure of the chance for the walker to reach a position far
away from the origin, is exponentially small, and is given by (see appendix A)

P(t, x) ∼ e−tI (x) (x > 0, t � 1) (2.2)

where I (x) = ( 1
2)[(1 + x) ln(1 + x) + (1 − x) ln(1 − x)] is an entropy function. In

other words, the law of large numbers holds, the meanM(t) converging to its average
〈M〉 = 0, when t → ∞. The limit law of M is a delta peak centred atx = 0, and
P(t, x)→ P∞(x) = H(−x), whereH(x) is the Heaviside function.

The persistent large deviationM(u) > x, ∀u 6 t corresponds to a situation where
the walker always had a mean speed larger thanx, i.e. stayed to the right of the position
xt , between 0 andt . If x > 0, R(t, x) behaves at large times in a similar fashion as in
equation (2.2). Ifx < 0, R(t, x) has a limitR∞(x) when t → ∞ which is a decreasing
function of x, with a discontinuity at every rational value ofx [29]. In the marginal case
x = 0, it is easy to show thatR(t, x) ≈ 1/

√
πt , for t large.

Finally persistence corresponds, for the walker, to always stepping in the same direction.
The persistence probability is

R(t) = e−t ln 2. (2.3)

Note thatI (1) = ln 2.
By analogy with the case of the random walk, we set, for the models studied in this

work,

P(t, x) ∼ e−a(t)I (x) (x > 0, t � 1) (2.4)

which defines a functiona(t) characteristic of the temporal behaviour of large deviations,
and an entropy functionI (x), keeping the same notation as above (see appendix A). In a
similar fashion, setting

R(t, x) ∼ e−b(t)J (x) (t � 1) (2.5)

defines a functionb(t) characteristic of the temporal behaviour of the persistent large
deviations.
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Table 1. Summary of results for the functionsa(t), b(t), I (x), J (x) (see equations (2.4) and
(2.5)).

a(t) b(t) I (x → 1) J (x → 1)

Random walk t t ln 2 ln 2{
Diffusion equation

One-dimensional Ising
O(1) ln t ∞ θ

Two-dimensional voter lnt (ln t)2 ∞ constant

The time dependence ofa(t) andb(t) for the models studied in this work is summarized
in table 1 and shall be discussed in the following sections.

Let us mention some mathematical references relevant for this work. Occupation times
have been studied for Markov processes [30], and for several infinite particle systems
[31, 32]. Large deviations for occupation times were studied in [33–36]. These references
shall be commented upon in the course of the paper. We are not aware of previous references
on persistent large deviations.

3. The diffusion equation

3.1. The independent interval approximation and the persistence exponent

First we introduce definitions, and recall results, which shall be needed in the next section.
Consider the equation

∂tφ(x, t) = ∇2φ(x, t) (3.1)

where φ(x, 0) is Gaussian, with zero mean. Herex denotes a point ind-dimensional
space. The changes of sign, or zero crossings, of the fieldφ at a given space point, occur
at timest1, t2, . . . , tn, starting from some time origin, or in the variableτ = ln t , at times
τ1, τ2, . . . , τn.

Define, for a given space pointx, the process8(t) = φ(x, t)/
√
〈φ(x, t)2〉. This

process is Gaussian and stationary in the time variableτ , i.e. its two-time correlation
function 〈8(τ1)8(τ2)〉 = [cosh(τ2 − τ1)/2]−d/2 only depends on the difference|τ2 − τ1|
[11, 12]. As a consequence, the autocorrelation of the processσ = sign(8) reads [11, 12]

A(τ) = 〈σ(0)σ (τ )〉 = 2

π
sin−1 1

(coshτ/2)d/2
(3.2)

with the Laplace transform

Â(s) =
∫ ∞

0
dτ e−sτA(τ) = 1

s

(
1− d

2π
Id(s)

)
(3.3)

where

Id(s) =
∫ ∞

0
dτ e−sτ

tanhτ/2√
(coshτ/2)d − 1

. (3.4)

Let us denote byln = τn − τn−1 the intervals between zero crossings in theτ variable.
Considering the intervals as independent reduces the zero crossing process to a renewal
process, entirely described, in the stationary regime, byf (l), the probability density function
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of intervals. For such a process the probabilitypn(τ) of having exactlyn zero crossings up
to time τ reads, in the Laplace space,

p̂n(s) = (1− f̂ )2
s2〈l〉 f̂ n−1(s) (n > 0)

p̂0(s) = 1

s
− 1− f̂
s2〈l〉 .

(3.5)

Noting thatA(τ) = ∑∞
n=0(−)npn(τ ), leads to the following relation between̂f and Â

[11, 12]

f̂ (s) = 1− 〈l〉s(1− sÂ)/2
1+ 〈l〉s(1− sÂ)/2 =

1− s√d/2Id(s)
1+ s√d/2Id(s)

(3.6)

with 〈l〉 = π√8/d.
The persistence probabilityR(t) is the probability that the fieldφ at a given space point

did not change sign up to timet . Equivalently it is the probability thatσ(τ) did not flip up
to time τ , i.e. the probability of no zero crossingp0(τ ). At large times it behaves ast−θ ,
or as e−θτ . As a consequence, at largel, f (l) ∼ e−θl , the persistence exponent appearing
as the rightmost pole of̂f (s), s = −θ [11, 12].

For example, in one dimension:

I1(s) =
√

2
∫ ∞

0
dτ e−sτ

coshτ/4

coshτ/2
=
√

2(β(s + 1
4)+ β(s + 3

4))

=
√

2
∞∑
p=0

(−)p
(

1

s + 1
4 + p

+ 1

s + 3
4 + p

) (3.7)

with I1(0) = 2π . The functionβ(x) is related toψ(x), the logarithmic derivative of the
gamma function, by

β(x) = 1

2

[
ψ

(
x + 1

2

)
− ψ

(x
2

)]
. (3.8)

In two dimensions:

I2(s) =
∫ ∞

0
dτ

e−sτ

coshτ/2
= 2β(s + 1

2)

= 2
∞∑
p=0

(−)p 1

s + 1
2 + p

(3.9)

with I2(0) = π . The largest zero of 1+ s√d/2Id(s) is found to be ats = −θ , with
θ = 0.120 327 978 84. . . , for d = 1 andθ = 0.186 221 071 297. . . , for d = 2.

3.2. Statistics of the mean magnetization

In this section our concern is the determination of the distribution of the random variable
M(t), at large times. We denote byt , or by τ in the logarithmic scale, the observation
time and byλ the ‘backward recurrence time’, i.e. the length of time measured backwards
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from τ to the last crossing event beforeτ : λ = τ − τn. The probability distribution ofλ in
Laplace space reads, in the stationary regime†,

q̂(s) = 1− f̂ (s)
s〈l〉 . (3.10)

We have, assuming thatσ(t) = 1,

M(t) = 1

t

∫ t

0
du σ(u) = 1

t
(t − tn − (tn − tn−1)+ · · ·) = 1− 2ξ (3.11)

where

ξ = tn

t
− tn−1

t
+ · · · = e−λ(1− e−ln + e−ln−ln−1 − · · ·) = e−λXn. (3.12)

Assuming thatσ(t) = −1 leads toM(t) = 2ξ − 1. Note thatξ = T∓/t , according to the
sign of σ(t), i.e. ξ is the fraction of time spent in the ‘wrong’ phase (cf equation (2.1)).
The random variableXn = 1− e−ln + e−ln−ln−1 − · · · obeys the recursion relationXn =
1− e−lnXn−1. It is therefore recognized as a Kesten variable [37–40].

To summarize, in the limitt →∞, the three equations

M = ±(1− 2ξ) (3.13a)

ξ = e−λX (3.13b)

X = 1− e−lX (3.13c)

contain the relevant information for the determination offM(x) = −dP∞(x)/dx, the
distribution ofM. Equation (3.13c) should be understood as an equality in distribution.

The determination of the probability density of the Kesten variableX (and hence of
fM(x)) for any given distribution of intervalsf (l) is known in general as a hard problem,
and does not seem feasible in this case. However, from this set of equations we are able to
extract the following information.

(i) We perform a local analysis offM(x), for x → 1.
(ii) We compute the moments〈Mk〉 of fM(x).
(iii) We solve the set of equations (3.13a–c) for the case of an exponential distribution

of intervals, f (l) = θe−θl , proportional to the tail of the true distribution given, in the
Laplace space, by equation (3.6).

Let us analyse the local behaviour offM(x) in the persistence regionx → 1 (a similar
analysis would hold in the limitx → −1). Then ξ → 0, i.e. λ → ∞, with X finite.
These conditions define the persistence region, wheres ≈ −θ . Thereforef (l) ≈ ae−θl

and q(λ) ≈ ae−θl/〈l〉θ , wherea is the residue off̂ (s) for s = −θ . Consider the Mellin
transform of the law ofξ , 〈ξ s〉. From (3.13b) one obtains

〈ξ s〉 = q̂(s)〈Xs〉 (3.14)

whereq̂(s) is the Laplace transform (3.10). In this regime, one has〈ξ s〉 ≈ b/(s + θ), with
b given by

b = a

〈l〉θ 〈X
−θ 〉. (3.15)

By inversion of the Mellin transform equation (3.14) one obtains the behaviour of the
distribution ofξ , hence that ofM in the persistence regionx → 1. One finds

fM(x) ≈ 2−θ−1b(1− x)θ−1 (x ≈ 1). (3.16)

† Let us note that the age of the system considered in [21] is just equal tot − tn. It is related to the scaling
variabletn/t = e−λ, the distribution of which is known in the case considered here.
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Figure 1. Plot of kθ 〈Mk〉 (k = 2, 4, . . . ,50) for the two-dimensional diffusion equation in the
independent interval approximation, versusk−1, showing the approach to the limit amplitude
0.8424. The arrow represents the value of the limit amplitude 0.8476 for the beta law (see (3.21)).

As a consequence, for largek one has

〈Mk〉 ≈ 2−θb0(θ)k−θ . (3.17)

Note that the determination ofb requires that of〈X−θ 〉, which is unknown. A numerical
estimate of the amplitudeb can nevertheless be given, as follows. Using the method given
in appendix B, we computed the numerical values of the first 50 moments ofM in one and
two dimensions, in the independent interval approximation. By extrapolating these results
we find 2−θb0(θ) ≈ 0.870 ford = 1, and 2−θb0(θ) ≈ 0.8424 ford = 2. In figure 1 a plot
of k−θ 〈Mk〉 versus 1/k, for d = 2, is given, showing the approach to the limit amplitude.

We are naturally led to compare the distributionfM(x) to a beta law on(−1, 1), with
the same singular behaviour in the regionx ≈ 1,

f Beta(x) = B−1( 1
2, θ)(1− x2)θ−1 (3.18)

with

B( 1
2, θ) =

0( 1
2)0(θ)

0( 1
2 + θ)

. (3.19)

The even moments of this law are given by

µk = B((k + 1)/2, θ)

B( 1
2, θ)

. (3.20)

The odd moments are zero, by construction. At large orders,

µk ≈ 2θ
0( 1

2 + θ)
0( 1

2)
k−θ (k � 1). (3.21)

The amplitude 2θ0( 1
2 + θ)/0( 1

2) is equal to 0.8858 ford = 1, and to 0.8476 ford = 2.
Defining the ratio of local amplitudesA by fM ≈ Af Beta, for x ≈ 1, yields

A = lim
k→∞
〈Mk〉
µk
= bB(θ, θ + 1) (3.22)
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Table 2. Values of the moments〈Mk〉 for the diffusion equation, computed in the independent
interval approximation, compared with the moments of the beta law (3.18).

〈M2〉 µ2 〈M4〉 µ4 〈M6〉 µ6

One-dimensional 0.7996 0.8060 0.7383 0.7462 0.7035 0.7119
Two-dimensional 0.7268 0.7286 0.6459 0.6482 0.6008 0.6032

using (3.17) and (3.21). Hence using the numerical values given above, we findA ≈ 0.982
for d = 1, andA ≈ 0.9938 ford = 2. Table 2 gives the values of the first moments〈Mk〉,
compared with the moments of the beta law (3.18).

The resemblance offM(x) to the beta law (3.18) is enhanced by the fact that the solution
of (3.13a–c) for an exponential distribution of intervalsf (l) = θe−θl , proportional to the
tail of the true distributionf (l) given, in the Laplace space, by equation (3.6), is precisely
given by (3.18) (see appendix B). This demonstrates the dominance of the tail off (l) for
the determination offM(x).

We also computed the probability distribution of the mean magnetization obtained by
numerical integration of equation (3.1), ford = 1. This distribution is also found to be very
close tof Beta.

In summary, the mean magnetizationM(t) has a limit distribution whent → ∞. In
other words there is no law of large numbers for the random processσ(t), and absence of
ergodicity. This distribution is found to be extremely close to the beta distribution (3.18).
As long asθ < 1, the densityfM(x) diverges forx → ±1. Therefore the most probable
values ofM are near−1 and 1, while the average〈M〉 = 0. The probability of a ‘large
deviation’, i.e. in the regimet → ∞, x close to 1, is large. Finally, the divergence when
x → 1 of the functionI (x) defined in (2.4), signals the crossover to the persistence regime.

3.3. Persistent large deviations of the mean magnetization

We performed numerical simulations of the diffusion equation, equation (3.1) in one
dimension, for a system size equal to 106, starting from a random initial condition. At
large times one observes an algebraic decay of the probability of persistent large deviations
R(t, x) of the form

R(t, x) ∼ t−θ(x) (−16 x 6 1) (3.23)

which corresponds to the behaviourb(t) ∼ ln t for the function defined in (2.5). The
exponentθ(x) is to be identified toJ (x) defined in equation (2.5).

Figure 2 gives a plot of the probability of persistent large deviationsR(t, x) for
x = −0.8. The usual persistence probabilityR(t) is also plotted, for comparison. The
third curve corresponds toR(t, x, y) defined at the end of section 6 (see the comment
there).

Figure 3 shows a plot of the exponentθ(x) for −1 6 x 6 1. The exponent varies
continuously from 0, forx = −1, to the value of the usual persistence exponentθ ≈ 0.121,
for x = 1. (We recall that the value ofθ ≈ 0.121 obtained by numerical integration
of (3.1) is slightly larger than the value of the exponent obtained by the independent interval
approximation [11, 12].) We shall comment further on these results in section 6.

Let us finally mention that similar results to those presented in figures 2 and 3 are found
in two dimensions.
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Figure 2. Persistence probabilityR(t), probability of persistent large deviationsR(t, x), and
R(t, x, y) (see section 6), for the one-dimensional diffusion equation. (System size= 106.)
From bottom to top:R(t) (slope= −0.121),R(t,−0.8) (slope= −0.096),R(t,−0.8,−0.8)
(slope= −0.065). In broken curves: regression lines.
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Figure 3. Exponentθ(x) for the one-dimensional diffusion equation. The arrow represents the
usual persistence exponentθ ≈ 0.121.

4. The Glauber–Ising chain

We studied the Ising chain at zero temperature with the following dynamics [41]. On
each site of the one-dimensional lattice, values of the spinσ = ± are initially distributed
randomly. At each timestep a site is picked at random. The spin on this site takes the value
of one of its neighbours, chosen at random.

We performed numerical simulations on a system of sizeL = 106. As for the case of
the diffusion equation,P(t, x) has a limit distribution whent → ∞. This distribution is
very close to a beta law corresponding to the persistence exponentθ = 3

8 [8]. The analytical
study ofP(t, x) will be given elsewhere. In particular it is easy to understand why this
distribution converges to a limit whent →∞. For instance〈M2〉 = Â(1), whereÂ(s) is
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Figure 4. Probability of persistent large deviationsR(t, x) for the one-dimensional Ising model.
(System size= 106.) From bottom to top:R(t), R(t, 0.5), R(t, 0), R(t,−0.5), R(t,−0.8).
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Figure 5. Exponentθ(x) for the one-dimensional Ising model. The arrow represents the usual
persistence exponentθ = 3

8 .

the Laplace transform of the autocorrelation functionA(τ) = 〈σ(0)σ (τ )〉 with respect to
the logarithmic timeτ = ln t (see equation (B.7)) [44].

The probability of persistent large deviationsR(t, x) decays algebraically, with an
exponent continuously varying withx (figures 4 and 5). Forx = 1 the usual persistence
exponentθ = 3

8 is recovered.

5. The two-dimensional voter model

The voter model is defined as follows [42]. On each site of ad-dimensional lattice, opinions
of a voter or values of a spinσ = 1, 2, . . . , q are initially distributed randomly. At each
timestep a site is picked at random. The voter on this site takes one of the opinions of its
2d neighbours, with equal probabilities. Hence the rules of the dynamics of the voter model
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are a simple generalization of those of the one-dimensional Ising model at zero temperature.
In particular the one-dimensional voter model is identical to the Glauber–Ising chain.

Earlier references toP(t, x) or to the occupation timeT+ for the voter model may
be found in [32, 34–36]. The functiona(t) appearing in the large deviation expression
equation (2.4) is related to the variance of the occupation timeT+ [32, 34, 35], hence to the
two-time correlation function of the process [44], by (see appendix A)

a(t) ∼ t2

VarT+
∼ 1

VarM
. (5.1)

In one dimension, VarM = constant, as mentioned in section 4, hencea(t) = O(1).
The convergence in distribution ofT+/t in one dimension was shown in [32]. In two
dimensions, VarM ∼ 1/ ln t [32, 34–36, 44], hencea(t) ∼ ln t . Therefore the rate at which
the distribution ofM becomes peaked is very slow. It was conjectured in [34, 35] that,
for d = 2, the scaling hypothesis (A.7) is exact, and that thereforeP(t, x) should have
algebraic decay at large times. Ford > 2, a(t) is respectively equal to

√
t , t/ ln t , t for

d = 3, 4 andd > 4 [32, 34–36, 44].
We performed numerical simulations of the two-dimensional voter model, for system

sizes up to(4000)2, with q = 2 (σ = ±1). These simulations suggest that, in the regime
of large deviations,P(t, x) behaves ast−θ̃ (x), with an exponent continuously varying with
x (x > 0), and to be identified toI (x) defined in equation (2.4). Since VarM ∼ 1/ ln t ,
the regime of large deviations is very long to attain. We shall present the analysis of the
scaling in [44]. We conjecture thatI (x)→∞ whenx → 1.

The numerical results also seem to indicate thatR(t, x) behaves as exp[−J (x)(ln t)2],
reminiscent of the behaviour of the usual persistence probability [16, 43]. Hence the function
b(t) introduced in (2.5) is equal to(ln t)2. It is nevertheless rather difficult to conclude, on
the basis of our numerical simulations.

We conjecture thatb(t) is proportional toN(t), the average number of particles in the
dual particle system (diffusing coagulation, or equivalently reaction diffusion A+ A → A,
with a local source).N(t) is equal respectively to lnt , (ln t)2,

√
t , t/ ln t , t for d = 1, 2, 3,

4 andd > 4 [32, 34–36, 43]. These results have a clear intuitive interpretation. When the
dimension of space increases, particles interact less strongly since they have increasingly
more space to explore before meeting. As a consequence, they are less correlated and
their average number increases. In a high enough dimension, the reaction between particles
becomes irrelevant, henceN(t) becomes proportional tot , reflecting the total independence
of the particles. Note that above two dimensions,a(t) is equal toN(t) (and therefore to
b(t)).

The voter model therefore interpolates between the case of the Glauber–Ising chain seen
in previous section, ifd = 1, and the case of the random walk of section 2, ifd > 4.

6. Discussion and conclusion

The most striking conclusions that may be drawn from this study are, from our point
of view, the existence of a limit law for the mean magnetization, and the appearance of
families of exponents in the temporal decay ofR(t, x), the probability of persistent large
deviations, both for the diffusion equation (in any dimension) and the one-dimensional Ising
chain. More generally, these features are expected for any coarsening (or ageing) system for
which temporal scaling takes place. Finally there are indications that the large deviations
P(t, x) for the two-dimensional voter model are algebraic. This extends the scope of former
studies on the persistence exponents found in coarsening systems.
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A number of comments are in order.
The time dependence ofa(t) and b(t), defined in (2.4) and (2.5), is summarized in

table 1. One observes that for the random walk,a(t) andb(t) are proportional tot , while
these functions are slowly increasing with time for the coarsening systems considered in
this work, or even constant. This may be interpreted as follows. In the case of the random
walk,M(t) is given by a sum oft independent random variables. In the coarsening systems
studied here, values of the spin at a fixed position at different times are strongly correlated
random variables. Thusa(t) and b(t) measure in some sense the effective number of
independent variables in the system. This is clear fora(t), from its very definition given in
appendix A, and forb(t), at least for the voter model, from the discussion given at the end
of section 5.

Thus the mechanism by whichR(t, x)—and as a consequenceR(t), the usual persistence
probability—have algebraic decay at large times, for the diffusion equation and the one-
dimensional Ising model, can be traced back to the logarithmic behaviour ofb(t) defined
in equation (2.5). The same comment holds forP(t, x) anda(t) for the two-dimensional
voter model.

Unfortunately the exact computation of the exponents seems a difficult task, since this
amounts to computing the ‘entropy’ functionsI (x) or J (x). Already computing the usual
persistence exponent, corresponding in the present framework to taking the limitx → 1,
is in general difficult. Moreover, even for the simple random walk, the probabilityR(t, x)

is a nontrivial mathematical object [29]. At least for the diffusion equation, for which it
is possible to obtain analytic results forP(t, x) in the independent interval approximation
(see section 3), one could hope of computingR(t, x). Let us note that some aspects of this
work, for instance the interpretation of the exponents as entropy functions, are reminiscent
of the multifractal formalism.

One also observes that for coarsening systems, whenx → 1, I (x) diverges, whileJ (x)
converges to a constant. The divergence ofI (x) signals the crossover from large deviations
(P(t, x)) to persistence (R(t)). The convergence ofJ (x) shows thatR(t, x) is a natural
generalization of the persistence probabilityR(t), b(t) encoding the type of decay of the
persistence probability, being algebraic or not.

We can enhance the difference betweenR(t, x) andP(t, x) as follows. First define the
new random variable

σ(t, x) = sign(M(t)− x) (6.1)

which is an indicator of whether the mean magnetizationM(t) at time t is above or below
the levelx. One has

P(t, x) =
〈

1+ σ(t, x)
2

〉
. (6.2)

ThenR(t, x) = P(M(u) > x, ∀u 6 t) is just the persistence probability of this random
variable. Therefore

R(t, x) = P(σ(u, x) = 1, ∀u 6 t) =
〈

1+ σ(t1, x)
2

1+ σ(t2, x)
2

· · · 1+ σ(tn, x)
2

〉
(6.3)

(taking a discrete set of intermediate times, then lettingn→∞) which shows thatR(t, x)
is a highly nonlocal function of time.

One may generalize the present approach by progressively ‘thinning’ large deviations,
and tracking increasingly rare events. Let us define

M(t, x) = 1

t

∫ t

0
du σ(u, x) (6.4)
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(−1 6 M(t, x) 6 1) and the corresponding probabilitiesP(t, x, y) = P(M(t, x) > y) and
R(t, x, y) = P(M(u, x) > y, ∀u 6 t).

First consider the random walk. Takex = 0 for simplicity. ThenM(t, 0) is simply
related to the fraction of time the walker spends on the right-hand side of the origin. The
limit distribution of this quantity (whent →∞) is given by the arc sine law [45].

We computedR(t, x, y) on the diffusion equation, and on the Ising chain. For example,
figure 2 showsR(t, x, y), with x = y = −0.8, for the one-dimensional diffusion equation.
Again algebraic decay is observed.

Let us point out that this progressive thinning of large deviations implies probing the
system by events which are always more nonlocal in time. This questions the possibility of
the existence of an infinite number of exponents in temporal quantities measured on strongly
interacting systems.
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Appendix A

This appendix provides an explanation of the large deviation expressions (2.2) and (2.4).

A.1. Independent random variables

ConsiderY = tM =∑t
1 σ(u), where theσ are independent identically distributed random

variables. The generating function of moments ofY is

〈esY 〉 = etK(s) (A.1)

whereK(s) = ln〈esσ 〉 is the generating function of cumulants of the random variableσ .
An inverse Laplace transform yields

fY (y) =
∫

ds

2π i
e−sy+tK(s) =

∫
ds

2π i
e−t [sx−K(s)] (A.2)

wherex = y/t . For t → ∞ we use the saddle-point method to evaluate the integral. At
the saddle point,K ′(sc) = x. Defining

I (x) = scx −K(sc) (A.3)

yields fY (y) ∼ e−tI (x). Finally, at large times,

P(t, x) ∼ e−tI (x) (A.4)

which is (2.2). Note thatI (x) is the Legendre transform ofK(s).
Let us apply this general formalism to the case of the random walker (see section 2).

Then〈esσ 〉 = coshs, andK(s) = ln coshs. At the saddle pointx = K ′(sc) = tanhsc, hence

sc = 1

2
ln

1+ x
1− x . (A.5)

Noting that coshsc = (1−x2)−1/2, leads toI (x) = ( 1
2)[(1+x) ln(1+x)+(1−x) ln(1−x)].
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A.2. Correlated random variables

Consider the generating function of the cumulants ofM, denoted bycn,

KM(s) = ln〈esM〉 =
∑ cn

n!
sn. (A.6)

Assume that, whent →∞, the cn scale as [33, 34]

cn ≈ bn

[a(t)]n−1
(t →∞) (A.7)

wherea(t) diverges witht , and thebn are constants. Hencea(t) ∼ 1/VarM.
Now considerY = a(t)M. Then

1

a(t)
ln〈esY 〉 = 1

a(t)
KM(sa(t)) ≈

∑ bn

n!
sn ≡ K(s) (t →∞). (A.8)

Hence at large times,

〈esY 〉 ≈ ea(t)K(s) (A.9)

from which one obtains

fY (y) =
∫

ds

2π i
e−sy+a(t)K(s) =

∫
ds

2π i
e−a(t)[sx−K(s)] (A.10)

wherex = y/a(t). Continuing as above, we obtain, at large times,

P(t, x) ∼ e−a(t)I (x) (A.11)

which is (2.4). Again,I (x) is given by (A.3) andK ′(sc) = x.
Here, the role ofa(t) parallels that played byt for the former case of independent

variables. This function can be therefore interpreted as the effective number of independent
variables, in the case where the spinsσ at different times are correlated. This analysis
applies to the voter model in dimensiond > 2.

In the cases of the diffusion equation or the one-dimensional Ising–Glauber chain,
a(t) = O(1), because all cumulants become constant whent → ∞. ThereforeP(t, x)
converges to a limit lawP∞(x) that we shall still write in the form (A.11), though it is not
derived from (A.10). By extension, we shall still speak of large deviations whent → ∞
andx ≈ 1.

Appendix B

In this section we first show how to compute the moments of the distribution of the mean
magnetization for the diffusion equation. We then solve the set of equations (3.13a–c) for
the case of an exponential distribution of intervals,f (l) = θe−θl , proportional to the tail of
the true distribution given by equation (3.6).

Using equations (3.13a–c), the moments〈Mk〉 can be computed recursively as follows.
The computation is completed in three steps.

(i) From (3.13c) one computes the moments ofX from those of e−l , i.e. as functions of
the coefficientsf̂k, recursively, wheref̂k denotesf̂ (s) for integer values of the argument.
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For instance

〈X〉 = 1

1+ f̂1

〈X2〉 = 1− f̂1

(1+ f̂1)(1− f̂2)

〈X3〉 = 1− 2f̂1+ 2f̂2− f̂1f̂2

(1+ f̂1)(1− f̂2)(1+ f̂3)

. . . .

(B.1)

(ii) From (3.13b), and using equation (3.10), one has

〈ξk〉 = 〈e−λk〉〈Xk〉 = 1− f̂k
k〈l〉 〈X

k〉. (B.2)

(iii) By symmetry, only even moments ofM are nonzero. From (3.13a) they are related
to those ofξ by a binomial expansion.

Finally one obtains

〈M2〉 = 1− 2

〈l〉
1− f̂1

1+ f̂1

〈M4〉 = 1− 8

3〈l〉
(1− 2f̂1+ 2f̂2− f̂1f̂2)(1− f̂3)

(1+ f̂1)(1− f̂2)(1+ f̂3)

. . . .

(B.3)

Replacingf̂ (s) by its expression in terms of̂A(s) (see equation (3.6)), permits us to
recast (B.3) into

〈M2〉 = Â1

〈M4〉 = 1− (1− 3Â1+ 4Â2)(1− 3Â3)

1− 2Â2

.
(B.4)

The first line of equation (B.4) may be understood as follows. In the long-time regime,
using the logarithmic timeτ = ln t , one has

〈M2(τ )〉 = 2e−2τ
∫ τ

0
dτ2 eτ2

∫ τ2

0
dτ1 eτ1A(τ2− τ1) (B.5)

whereA(τ) is the autocorrelation function (3.2). Laplace transforming both sides of (B.5)
gives ∫ ∞

0
dτ e−sτ 〈M2(τ )〉 = 2Â(s + 1)

s(s + 2)
(B.6)

hence, whenτ →∞,

〈M2〉 = Â(1) (B.7)

since the rightmost pole of the right-hand side of (B.6) is ats = 0. The result (B.7) is
generic for coarsening systems, whenever the autocorrelation function is scaling in the two
time variables. In particular it holds for the Ising chain studied in section 4.
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We now show that the solution of equations (3.13a–c) for f (l) = θe−θl is the beta
law (3.18). SettingZ = e−l in (3.13c), the integral equation for the invariant distribution
fX reads

fX(x) =
∫ 1

0
dz
∫ 1

0
dy fZ(z)fX(y)δ(x − 1+ zy) (B.8)

wherefZ, the probability density function of the variableZ, is known from that of the
interval lengthl, f (l). For f (l) = θe−θl one hasfZ(z) = θzθ−1, which when cast into
equation (B.8) leads to the solution

fX(x) = B−1(θ + 1, θ)xθ (1− x)θ−1 (B.9)

whereB(θ + 1, θ) is the beta function. Then computing

〈ξ s〉 = 〈e−λs〉〈Xs〉 (B.10)

with 〈e−λs〉 = q̂(s) = θ/(s + θ), and 〈Xs〉 = B−1(θ + 1, θ)B(θ + s + 1, θ) leads to
〈ξ s〉 = B−1(θ, θ + 1)B(θ + s, θ + 1) hence to the law

fξ (x) = B−1(θ, θ + 1)xθ−1(1− x)θ (B.11)

for the random variableξ . Finally, for this choice off (l), the solution of (3.13a–c) is a
beta law on(−1, 1)

f Beta(x) = B−1( 1
2, θ)(1− x2)θ−1 (B.12)

which is equation (3.18).
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